๐Ÿ—บ️ Introduction

Coordinate Geometry is the study of geometry using the coordinate plane. This chapter helps us understand the position of points, distance between points, and area of triangles formed on the Cartesian plane.


๐Ÿงญ 1. Coordinate System

  • Origin (O): The point (0, 0) where the x-axis and y-axis intersect.

  • X-axis: Horizontal line.

  • Y-axis: Vertical line.

  • Coordinates of a point (x, y): Represented as:

    • x → horizontal distance

    • y → vertical distance


๐Ÿ“ 2. Distance Formula

Used to find the distance between two points A(x1,y1)A(x_1, y_1) and B(x2,y2)B(x_2, y_2):

Distance=(x2x1)2+(y2y1)2\text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

✅ Example:

Find distance between A(3, 4) and B(7, 1):

=(73)2+(14)2=16+9=5= \sqrt{(7 - 3)^2 + (1 - 4)^2} = \sqrt{16 + 9} = \boxed{5}

๐Ÿ“ 3. Section Formula

Divides a line segment joining two points A(x1,y1)A(x_1, y_1) and B(x2,y2)B(x_2, y_2) in the ratio m:nm:n:

(mx2+nx1m+n,my2+ny1m+n)\left( \frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n} \right)

๐Ÿ”ธ Midpoint Formula:

If m=n=1m = n = 1, then it becomes:

(x1+x22,y1+y22)\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)

๐Ÿงฎ 4. Area of a Triangle

To find the area of a triangle with vertices A(x1,y1)A(x_1, y_1), B(x2,y2)B(x_2, y_2), C(x3,y3)C(x_3, y_3):

Area=12x1(y2y3)+x2(y3y1)+x3(y1y2)\text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|

✅ Example:

A(1, 2), B(4, 6), C(5, 2)

=121(62)+4(22)+5(26)=124020=8 units2= \frac{1}{2} |1(6 - 2) + 4(2 - 2) + 5(2 - 6)| = \frac{1}{2} |4 - 0 - 20| = \boxed{8 \text{ units}^2}

๐Ÿ“Œ Key Concepts Table

ConceptFormula
Distance Formula(x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
Section Formula(mx2+nx1m+n,my2+ny1m+n)\left( \frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n} \right)
Midpoint Formula(x1+x22,y1+y22)\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
Area of Triangle( \frac{1}{2}

๐Ÿ”” Points to Remember

  • All points are represented in the form (x, y).

  • Use Distance formula for length between 2 points.

  • Use Area formula only for triangles with known coordinates.

  • In coordinate geometry, signs matter – be careful!


๐Ÿ“ฅ Download Chapter 18 PDF Notes(Coming Soon)
๐Ÿ“š Access All Chapters: Click here »
๐Ÿ”– Bookmark ToppersNoteHub for Maths + Science updates