๐Ÿ“˜ Introduction

This chapter helps you calculate the surface area and volume of 3D shapes like:

  • Cubes & cuboids

  • Cylinders

  • Cones

  • Spheres & hemispheres

  • Frustums (truncated cones)

You'll also learn how to apply these concepts to solve real-life problems, such as water tank capacity, metal used in a hollow pipe, or paint needed for walls.


๐Ÿ”ฒ 1. Surface Area of 3D Shapes

๐Ÿ“ฆ Cube and Cuboid

  • Surface Area of Cuboid = 2(lb+bh+hl)2(lb + bh + hl)

  • Surface Area of Cube = 6a26a^2


๐Ÿ”ต Cylinder

  • Curved Surface Area (CSA) = 2ฯ€rh2\pi rh

  • Total Surface Area (TSA) = 2ฯ€r(h+r)2\pi r(h + r)


๐Ÿ”บ Cone

  • Slant Height (l) = r2+h2\sqrt{r^2 + h^2}

  • CSA = ฯ€rl\pi rl

  • TSA = ฯ€r(l+r)\pi r(l + r)


⚪ Sphere & Hemisphere

  • Sphere:

    • CSA = 4ฯ€r24\pi r^2

    • TSA = 4ฯ€r24\pi r^2

  • Hemisphere:

    • CSA = 2ฯ€r22\pi r^2

    • TSA = 3ฯ€r23\pi r^2


๐Ÿงฉ Frustum of a Cone

Formed by cutting a cone parallel to its base.

  • CSA = ฯ€(r1+r2)l\pi (r_1 + r_2)l

  • TSA = ฯ€(r1+r2)l+ฯ€r12+ฯ€r22\pi (r_1 + r_2)l + \pi r_1^2 + \pi r_2^2


๐Ÿงฎ 2. Volume of 3D Shapes

๐ŸงŠ Cube & Cuboid

  • Volume of Cuboid = l×b×hl \times b \times h

  • Volume of Cube = a3a^3


๐Ÿงฑ Cylinder

  • Volume = ฯ€r2h\pi r^2 h


⛰️ Cone

  • Volume = 13ฯ€r2h\frac{1}{3} \pi r^2 h


⚫ Sphere & Hemisphere

  • Sphere Volume = 43ฯ€r3\frac{4}{3} \pi r^3

  • Hemisphere Volume = 23ฯ€r3\frac{2}{3} \pi r^3


๐Ÿถ Frustum

  • Volume = 13ฯ€h(r12+r22+r1r2)\frac{1}{3} \pi h (r_1^2 + r_2^2 + r_1 r_2)


๐Ÿ” 3. Applications in Daily Life

  • Calculating water capacity of tanks

  • Volume of gas cylinders

  • Area to be painted on walls

  • Designing cones, pipes, domes


๐Ÿ“ Important Formulas at a Glance

ShapeCSATSAVolume
Cube4a24a^26a26a^2a3a^3
Cuboid2h(l+b)2h(l + b)2(lb+bh+hl)2(lb + bh + hl)lbhlbh
Cylinder2ฯ€rh2\pi rh2ฯ€r(h+r)2\pi r(h + r)ฯ€r2h\pi r^2 h
Coneฯ€rl\pi rlฯ€r(l+r)\pi r(l + r)13ฯ€r2h\frac{1}{3}\pi r^2 h
Sphere4ฯ€r24\pi r^24ฯ€r24\pi r^243ฯ€r3\frac{4}{3}\pi r^3
Hemisphere2ฯ€r22\pi r^23ฯ€r23\pi r^223ฯ€r3\frac{2}{3}\pi r^3
Frustumฯ€(r1+r2)l\pi(r_1 + r_2)lCSA+ฯ€r12+ฯ€r22CSA + \pi r_1^2 + \pi r_2^213ฯ€h(r12+r22+r1r2)\frac{1}{3} \pi h (r_1^2 + r_2^2 + r_1 r_2)

๐Ÿ’ก Sample Questions

Q1. Find the CSA and Volume of a cylinder of radius 7 cm and height 10 cm.

  • CSA = 2×227×7×10=440 cm22 \times \frac{22}{7} \times 7 \times 10 = 440 \text{ cm}^2

  • Volume = 227×72×10=1540 cm3\frac{22}{7} \times 7^2 \times 10 = 1540 \text{ cm}^3

Q2. A cone has radius 3 cm and height 4 cm. Find slant height and CSA.

  • Slant height l=32+42=5l = \sqrt{3^2 + 4^2} = 5

  • CSA = ฯ€rl=227×3×5=47.14 cm2\pi rl = \frac{22}{7} \times 3 \times 5 = 47.14 \text{ cm}^2


✅ Key Points to Remember

  • Use ฯ€=227\pi = \frac{22}{7} unless told otherwise

  • TSA = CSA + area of base(s)

  • Volume tells you capacity; Surface Area tells you exposure

  • Practice unit conversions (cm³ to m³, etc.)


๐Ÿ“ฅ Download Chapter 13 PDF Notes: Coming Soon
๐Ÿ“˜ Previous Chapter: Chapter 12 – Areas Related to Circles »
๐Ÿ“š Next Chapter: Chapter 14 – Statistics »